Accueil > Ressources > Physique 3e année > Conservation de l’énergie

Énergie

Conservation de l’énergie

Énergie mécanique et énergie thermique

mardi 24 février 2009, par Occam Razor

Variation de l’énergie mécanique
Si un mobile n’est sollicité que par des forces conservatives, son énergie mécanique est conservée. L’énergie mécanique enlevée à un mobile par le le travail des forces de frottement, est intégralement transformée en énergie thermique. La physique postule que l’énergie se conserve. Elle peut se transformer ou être transférée d’un objet à un autre, mais elle ne se crée ni se perd. C’est le principe de conservation de l’énergie.

Exemple (tiré d’une épreuve de M. Didier Roulet)
Une météorite de 500 kg, en fer, voyage à travers l’espace à la température de -270 °C. Elle passe au voisinage de la Terre et, sous l’influence du champ de gravitation, tombe vers la surface. Parvenue à 120 km d’altitude, sa vitesse est de 5 km/s. Sous l’effet du frottement de l’air, toute la masse s’échauffe et en plus, 100 kg de fer fondent. On admet que 35 % de l’énergie thermique produite par le frottement de l’air sur la météorite partent immédiatement dans l’air ambiant.
 Calculez la vitesse de la météorite lorsqu’elle arrive au sol.

Première approche (accélération g supposée constante)
 sans frottement
S’il n’y a pas de frottement, nous pouvons appliquer la loi de conservation de l’énergie mécanique. Si nous appelons (1) la position élevée et (2) la position basse de la météorite, et si nous plaçons le niveau de référence de l’énergie potentielle au niveau du sol, cela donne :

E_{méc}(1)=E_{méc}(2)
mgh_1+\frac{mv_1^2}{2}=\frac{mv_2^2}{2}

N. B. Cette équation se simplifie par m : s’il n’y a pas de frottement, la vitesse finale est donc indépendante de la masse.
En résolvant cette équation par rapport à v_2, nous obtenons la vitesse de la météorite à l’arrivée sur Terre. Rép. 5.23\times 10^3 m/s

 avec frottement
Si la météorite subit une force de frottement, une partie de son énergie mécanique va être transformée en chaleur. 35 % de la perte d’énergie mécanique chaufferont l’atmosphère, et 65 % de cette perte serviront à élever la température de la météorite et à faire fondre une certaine masse de fer. Le principe de conservation de l’énergie permet d’écrire :

E_{mec}(1)-E_{mec}(2)=\text{Energie thermique}
\frac{65}{100}(mgh_1+\frac{m}{2}(v_1^2-v_2^2))=mc\Delta\theta+m_fL_f

En résolvant cette équation par rapport à v_2 on trouve la vitesse de la météorite lorsqu’elle arrive au sol. Rép. 4.98\times 10^3 m/s

Deuxième approche
 sans frottement
Si nous utilisons l’expression générale de l’énergie potentielle de gravitation (qui tient compte de la variation de l’accélération terrestre g avec l’altitude), l’équation ci-dessus s’écrit :
-\frac{GM}{R_T+h}+\frac{v_1^2}{2}=-\frac{GM}{R_T}+\frac{v_2^2}{2}

Rép. 5.23\times 10^3 m/s

 avec frottement
\frac{65}{100}(-\frac{GMm}{R_T+h}+\frac{mv_1^2}{2}+\frac{GMm}{R_T}-\frac{mv_2^2}{2})=mc\Delta\theta+m_fL_f

Rép. 4.97\times 10^3 m/s

Instructions Mathematica et valeurs numériques utilisées

Messages

  • Bonjour,

    À ce passage, "L’énergie mécanique enlevée à un mobile par les frottements réapparaît intégralement sous forme de chaleur.", je préférerais celui-ci :

    "L’énergie mécanique enlevée à un mobile par le le travail des forces de frottement, est intégralement transformée en énergie thermique."

    On met ainsi en évidence :
    a) la relation entre travail et variation d’énergie

    b) le fait qu’une énergie passe d’une forme à l’autre (le terme énergie apparaît dans les deux cas, qu’elle soit mécanique ou thermique)

    Il faudrait utiliser le therme "chaleur" (Symbole : Q) pour désigner la quantité d’énergie thermique échangée.

    Cordialement.

    Pascal Rebetez

  • Bonjour,
    Pour l’exercice de la météorite, il me manque une donnée, c’est-à-dire celle de la différence de température. Dans l’énoncé, l’on nous informe juste des -270 degrés, mais on ne nous dit pas quelle est la température de la météorite lorsqu’elle arrive sur terre. Est-ce que vous pourriez m’aider ?

    • Bonjour,

      Oui, comme on vous dit qu’une partie de la météorite fond, il y a un changement d’état. Durant celui-ci la température reste constante. C’est donc cette température qu’il faut connaître. Et c’est la température de fusion du fer. Vous trouverez cette dernière dans les tables. Elle vaut environ 1530 °C.